4,404 research outputs found

    BPS M2M2-branes in AdS4×Q1,1,1AdS_4\times Q^{1, 1, 1} Dual to Loop Operators

    Full text link
    In this paper, we first compute the Killing spinors of AdS4×Q1,1,1AdS_4\times Q^{1, 1, 1} and its certain orbifolds. Based on this, two classes of M2M2-brane solutions are found. The first class of solutions includes M2M2-branes dual to Wilson loops in the fundamental representation as special cases. The second class includes the candidates of the holographic description of vortex loops in the dual field theories.Comment: v6, typoes fixed, 14 pages, no figure

    Pairing Properties of Symmetric Nuclear Matter in Relativistic Mean Field Theory

    Full text link
    The properties of pairing correlations in symmetric nuclear matter are studied in the relativistic mean field (RMF) theory with the effective interaction PK1. Considering well-known problem that the pairing gap at Fermi surface calculated with RMF effective interactions are three times larger than that with Gogny force, an effective factor in the particle-particle channel is introduced. For the RMF calculation with PK1, an effective factor 0.76 give a maximum pairing gap 3.2 MeV at Fermi momentum 0.9 fm1^{-1}, which are consistent with the result with Gogny force.Comment: 14 pages, 6 figures

    Deformation effect on the center-of-mass correction energy in nuclei ranging from Oxygen to Calcium

    Get PDF
    The microscopic center-of-mass (c.m.) correction energies for nuclei ranging from Oxygen to Calcium are systematically calculated by both spherical and axially deformed relativistic mean-field (RMF) models with the effective interaction PK1. The microscopic c.m. correction energies strongly depend on the isospin as well as deformation and deviate from the phenomenological ones. The deformation effect is discussed in detail by comparing the deformed with the spherical RMF calculation. It is found that the direct and exchange terms of the c.m. correction energies are strongly correlated with the density distribution of nuclei and are suppressed in the deformed case.Comment: 7 pages, 3 figures, accepted by Chin.Phys.Let

    BCS-BEC crossover in nuclear matter with the relativistic Hartree-Bogoliubov theory

    Full text link
    Based on the relativistic Hartree-Bogoliubov theory, the influence of the pairing interaction strength on the di-neutron correlations and the crossover from superfluidity of neutron Cooper pairs in the 1S0^{1}S_{0} channel to Bose-Einstein condensation of di-neutron pairs is systematically investigated in the nuclear matter. The bare nucleon-nucleon interaction Bonn-B is taken in the particle-particle channel with an effective factor to simulate the medium effects and take into account the possible ambiguity of pairing force, and the effective interaction PK1 is used in the particle-hole channel. If the effective factor is larger than 1.10, a di-neutron BEC state appears in the low-density limit, and if it is smaller than 0.85, the neutron Cooper pairs are found totally in the weak coupling BCS region. The reference values of several characteristic quantities which characterize the BCS-BEC crossover are obtained respectively from the dimensionless parameter 1/(kFna)1/(k_{\rm Fn}a) with aa the scattering length and kFnk_{\rm{Fn}} the neutron Fermi momentum, the zero-momentum transfer density correlation function D(0) and the effective chemical potential νn\nu_{\rm n}.Comment: 8 pages, 4 figures, 2 tables, Accepted Thursday Jun 14, 2012 for Physical Review

    Deformation effect on the center-of-mass correction energy in nuclei ranging from Oxygen to Calcium

    Full text link
    The microscopic center-of-mass (c.m.) correction energies for nuclei ranging from Oxygen to Calcium are systematically calculated by both spherical and axially deformed relativistic mean-field (RMF) models with the effective interaction PK1. The microscopic c.m. correction energies strongly depend on the isospin as well as deformation and deviate from the phenomenological ones. The deformation effect is discussed in detail by comparing the deformed with the spherical RMF calculation. It is found that the direct and exchange terms of the c.m. correction energies are strongly correlated with the density distribution of nuclei and are suppressed in the deformed case.Comment: 7 pages, 3 figures, accepted by Chin.Phys.Let

    Challenge on the Astrophysical R-process Calculation with Nuclear Mass Models

    Full text link
    Our understanding of the rapid neutron capture nucleosynthesis process in universe depends on the reliability of nuclear mass predictions. Initiated by the newly developed mass table in the relativistic mean field theory (RMF), in this paper the influence of mass models on the rr-process calculations is investigated assuming the same astrophysical conditions. The different model predictions on the so far unreachable nuclei lead to significant deviations in the calculated r-process abundances.Comment: 3 pages, 3 figure

    Neutron star properties in density-dependent relativistic Hartree-Fock theory

    Full text link
    With the equations of state provided by the newly developed density dependent relativistic Hartree-Fock (DDRHF) theory for hadronic matter, the properties of the static and β\beta-equilibrium neutron stars without hyperons are studied for the first time, and compared to the predictions of the relativistic mean field (RMF) models and recent observational data. The influences of Fock terms on properties of asymmetric nuclear matter at high densities are discussed in details. Because of the significant contributions from the σ\sigma- and ω\omega-exchange terms to the symmetry energy, large proton fractions in neutron stars are predicted by the DDRHF calculations, which strongly affect the cooling process of the star. The critical mass about 1.45 MM_\odot, close to the limit 1.5 MM_\odot determined by the modern soft X-ray data analysis, is obtained by DDRHF with the effective interactions PKO2 and PKO3 for the occurrence of direct Urca process in neutron stars. The maximum masses of neutron stars given by the DDRHF calculations lie between 2.45 M_\odot and 2.49 M_\odot, which are in reasonable agreement with high pulsar mass 2.08±0.19M2.08 \pm 0.19 M_\odot from PSR B1516+02B. It is also found that the mass-radius relations of neutron stars determined by DDRHF are consistent with the observational data from thermal radiation measurement in the isolated neutron star RX J1856, QPOs frequency limits in LMXBs 4U 0614+09 and 4U 1636-536, and redshift determined in LMXBs EXO 0748-676.Comment: 28 pages, 11 figure
    corecore